

Current status and threats to fish biodiversity of Pailati *beel*, Bangladesh

Jannatul FERDOUS¹, Armina SULTANA², Sabrina Jannat MITU³, Ashiqur Rahman SHRABON², Zobayer RAHMAN⁴, Rasel MIA^{2*}

¹Sylhet Agricultural University, Faculty of Fisheries, Department of Fish Biology & Genetics, Sylhet - 3100, Bangladesh.

²Sylhet Agricultural University, Faculty of Fisheries, Department of Aquatic Resource Management, Sylhet- 3100, Bangladesh.

³Sylhet Agricultural University, Faculty of Fisheries, Department of Coastal & Marine Fisheries, Sylhet- 3100, Banaladesh.

⁴Sylhet Agricultural University, Faculty of Fisheries, Department of Fish Health Management, Sylhet- 3100, Bangladesh.

How to cite: Ferdous, J., Sultana, A., Mitu, S. J., Shrabon, A. R., Rahman, Z., & Mia, R. (2023.). Current status and threats to fish biodiversity of Pailati beel, Bangladesh. *Biodiversity Studies (BiSt)*, 2(1), 37-47.

* Corresponding Author

E-mail: raselsau22@gmail.com
(b) https://orcid.org/0000-0001-9562-1851
(D) https://orcid.org/0000-0001-6787-6806
(D) https://orcid.org/0000-0003-0236-1881
(D) https://orcid.org/0000-0003-0768-9181
(D) https://orcid.org/0000-0001-9558-8270
(D) https://orcid.org/0000-0001-9018-9326

Article History:

Received: 10.05.2023 Accepted: 17.07.2023 First online: 31.07.2023

Keywords Biodiversity, Pailati *beel*,

Biodiversity, Pailati bee Conservation

INTRODUCTION

Bangladesh is enriched with diverse fisheries resources, that make the country the most productive and dynamic sectors with substantial potential for future economic growth (Shamsuzzaman et al. 2020). Bangladesh is a realm of wetland with diverse inland and marine fisheries resources (Pandit et al., 2021), while approximately 4.24 million hectares of inland water are supported by haor basins, rivers, beels, flood plains and estuaries (DoF 2022). The nation has a diverse range of aquatic life, including approximately 260 types of freshwater fish and

Abstract

To evaluate the current status of fish biodiversity, a study was carried out in the Pailati beel. It was carried out using key informant interviews (KII), focus group discussions (FGD), guestionnaire interviews (QI) of fishermen, and secondary data collection. This water body comprised a total of 55 species, 23 families, and 10 orders, with 20% of the species being abundantly available, 40% of the species being commonly available, 29.09% of the species being moderately available, and 10.90% of the species being rarely available. Barbs and minnows (20%) were discovered to be the most common species, followed by carps (16.36%), catfishes (14.36%), and perches (14.55%). The most dominant order was the cypriniformes (38.18%), followed by the perciformes (20%) and the siluriformes (16.36%). Synbranchiformes, Clupeiformes, Osteoglossiformes, Beloniformes, Decapoda, and Anabantiformes made up the remaining seven classes. The values of the indices for Simpson dominance (C), Pielou's evenness (J'), Shannon-Weaver diversity (H), and Margalef's richness (d) in December, January, and February, respectively, were 0.91, 0.443, 3.25, 5.81, 0.94, 0.451, 3.29, and 5.95. Therefore, the results could be used to design and put into action plans that help to maintain the wetlands in a sustainable way.

> 730 types of marine fish, as well as other forms of aquatic organisms. IUCN Bangladesh only assessed 253 native fish species, of which 36 were migratory and 113 were found in floodplains and rivers (Pandit el al., 2021). Bangladesh has gained increasing international recognition as a major fish producer, having achieved self-sufficiency in fish production. The country now ranks 3rd globally for inland fish production, following China and India, and holds the 5th position for aquaculture production and the 11th for marine fish production (FAO, 2020, Samsuzzaman et al. 2020). The fisheries industry

makes up 3.57% of the overall Gross Domestic Product (GDP) of the nation, contributes 25.30% to the agricultural GDP, and generates over 2.0% of the total earnings from exports. In addition to meeting around 60% of the daily dietary requirement for animal protein, the target of fish production in the fiscal year 2020-21 was exceeded by producing 4.621 million metric tons (DoF 2022). Therefore, the role of fisheries sector is very vital in the socio-economic upliftment, poverty alleviation, manpower development, and food and nutrition security of the agriculture-dependent Bangladesh.

Wetlands, which are among the most crucial natural resources, support some of the most productive ecosystems on Earth. An ecosystem refers to the entire range of living organisms, encompassing genetic variation and diverse habitats within a particular ecosystem (Islam et al., 2015). A "beel" is a low-lying depression that resembles a lake in a wetland or floodplain, which is regarded as one of the preferred natural habitats for Bangladesh's indigenous fish species and contribute 2.3% of the nation's annual fish production. These permanent wetlands, covering an area of around 114,161 ha (DoF 2022, Pandit et al., 2021) are used by indigenous fish as a natural habitat for food and shelter (Rahman et al., 2019). Beels plays an important role in inland fish production and fishermen's livelihoods, while fish stocks fully or partially support fishermen's livelihoods (Islam et al., 2018). Hence, fish diversity of wetlands is an indicator of conservation status, ecosystem services and distribution pattern of diversified aquatic species in inland water fisheries.

According to Islam et al., 2015, one of Bangladesh's most urgent problems right now is the decline in the variety and richness of fish species from the country's inland waters or wetlands. Over the past few years, fisheries have been confronted with a range of difficulties arising from both natural and human activities, including climate change, environmental disasters, industrialization, pollution, overfishing, harmful fishing practices, and the use of pesticides and agricultural chemicals (Pandit et al. 2021; Rimi et al., 2022; Akter et al., 2020, Sunny et al., 2022). Because of the substantial threats posed by all of these activities to the aquatic life that makes up the beel ecosystem, a number of fish species are now globally considered to be critically endangered. As a

result, detailed analyses of the biodiversity of individual water bodies, their preservation, and their sustainable management are seen as key step (Islam et al., 2015; Pandit et al., 2022).

Therefore, it is essential to take pragmatist management measures in order to improve the biodiversity status of the beel, upon which local communities rely. National programs and biological management technologies have been developed to boost fish production and manage open water resources in order to prevent the depletion of aquatic resources. Prior to implementation, it is essential to understand the state and trend of a management strategy; yet, there are few published publications that deal with this problem. There have been numerous studies on the status of the fish biodiversity in wetlands, rivers, estuaries, and beels (Pandit et al., 2021; Rimi et al., 2022; but no such work has been done on the Pailati beel. In light of the aforementioned fact, the current study was conducted in order to ascertain the state, trend, and hazards to the aquatic biodiversity of the Pailati beel.

MATERIALS and METHODS

Study Area

Mohanganj and Pailati *Beel* are separated by a distance of approximately 10 kilometers. The *beel* encompasses an area of 12 acres and is surrounded by three villages, namely Pailati, Palgao, and Kulputa. The southern boundary of the *beel* is marked by the Khagra River. Unfortunately, no sanctuary or Katari has been established in the area. The water level in the *beel* is known to dry up periodically. To catch fish, the fishermen employ three different types of nets: sceine net, khewa net, and khana net. Even though there are challenges associated with fishing in the bill, the local fishermen continue to utilize this resource to support their families.

Data collection methods

The information was gathered with regard to the fish diversity and the reasons for the *beel* population decrease. Focus group discussions (FGD) for fishermen were used as a Participatory Rural Appraisal (PRA) method in this research, along with cross-check interviews with important informants. Sixty (60) fishermen from four communities in the Pailati *beel* were randomly

Figure 1. Study area (Pailati beel)

selected to participate in questionnaire interviews for the purpose of gathering data. Interviews with fishers were conducted at their homes or on their fishing grounds. Five FGDs total, with 15 to 20 fishermen in each group, were performed in the *beel* area. Where information was contradictory or requested for, cross-check interviews were performed with important individuals like the Upazila Fisheries Officer (UFO), teachers, local leaders, and NGO workers.

Collection of fish sample

Fish samples were taken during the catch from nearby fish landing sites and fishermen who had been informed earlier. Local fishermen use a variety of fishing gear in the study area, which varies in terms of target species, size, and performance (e.g., seine nets, gill nets, cast nets, hooks, and traps). Every sampling month used the same gathering techniques.

Identification of collected fish samples

Fish collected were arranged according to their main physical characteristics. The species that were challenging to recognize on-site were transferred to the Fisheries Biology and Genetics laboratory, Sylhet Agricultural University, where they were kept in a buffered formalin solution of 5–10%. Then the species were identified by analyzing their morphometric and meristic characteristics. The taxonomic analysis was completed in accordance with IUCN Bangladesh (2015). According to Nelson (2006), the fish species were categorized after identification.

Fish species diversity indices

The researchers used several indices to calculate the diversity, species richness, evenness, and dominance of fishes in their study. Specifically, they utilized the Shannon-Weaver diversity index (H') developed by Shannon and Weaver in (1949) to measure diversity. They also used the Margalef index (d) developed by Margalef in (1968) to measure species richness, Pielou's index (J') developed by Pielou in (1966) to measure evenness, and the Simpson index to measure dominance. The equations used to calculate these indices were as follows.:

Simpson	dominance	index	(C)=
$\sum_{i=1}^{s} \left(\frac{ni}{N}\right)^2$			

ni = number of individuals in the 'each' species

N = total number of individuals

S = total number of species

Shannon-Weiner diversity index (H): H =-Sum [pi × log(pi)] Where, H'=Shannon-Weiner index,

pi=ni/N, ni= no. of indivduals of a species, and N=Total number of individuals.

Margalef's species richness index (d):

d = (S-1)/log(N)

Where, S = Total species, N = Total individuals.

Pielou's evenness index (J'):

J' = H(s)/H(max)

Where, H(s)=The Shannon-Weiner diversity index, and H(max)=The theoretical maximum value for H(s) if all species in the sample were equally abundant.

Statistical analysis

Data input, pre-processing, and analysis of the collected information were done using SPSS software version 25.0, which stands for Statistical Package for the Social Sciences. The evaluation of biodiversity indices was done using PAST (Paleontological Statistics) version 2.16. ArcGIS 10.0 software was used to map the research area with the assistance of a GPS. (GPS). Analyses were conducted both qualitatively and quantitatively.

RESULTS and DISCUSSION

In the Pailati beel, a total of 55 species of fish and prawns were found, which belonged to 10 different orders, 23 families, and 13 groups. Within these species, there were 53 types of fish and 2 types of prawns. (Table 1). Because the fish diversity of this beel had never been investigated before, this study's findings could not be evaluated in comparison to those of other studies. The Medha Beel is home to a diverse range of aquatic life, including 70 types of wild fish, four types of prawns, one type of crab, one type of snail, and four types of turtles. These species belong to 23 different families and 50 different genera (Chakraborty et al., 2009). According to Galib et al. (2009), a study conducted on Chalan beel reported the presence of a total of 81 fish species. These included 72 species that were native to the area, and 9 species that were non-native or exotic. The fish belonged to 12 different orders, 27 families, and 59 genera. (Kumar, 2011) found a total number of 93 aquatic species from bogjan beel which was higher than the present findings. Saha & Hossain (2002) reported that there were 40 fish species in

Saldu beel. However, the number of fish species identified in the present study is higher than what they reported. In contrast to the current study, Chakraborty et al., (2021) listed a total of 91 species from 65 genera that were found in the Charia beel. Compared to the current study, Rahman et al., (2019) only counted 33 fish species from 6 orders in the Basurabad beel. According to Siddique et al., (2013), 58 fish species from 21 families and 9 orders were found in the dogger beel. From Bhawal beel, Bangladesh, Sultana et al., (2019) recorded 56 species of fish, including prawn, in 10 orders and 23 families. Joadder et al., (2016) found a total of 52 species of fish from Kumari beel which were similar to the present study.

According to their availability, the observed species were classified into four statuses: Abundantly available (AA) 20%, commonly available (CA) 40%, moderately available (MA) 29.09%, and rarely available (RA) 10.90% (Figure 2). Pandit et al., (2020) observed the highest number of fish species in Gurukchi River was RA (29.82%), followed by CA (28.07%), MA (22.81%), and AA (19.30%). Galib et al., (2009) enlisted CA (23%), AA (17%) and RA (19%) in challan *beel*. Sultana et al., (2019) recorded 44.65% available, 19.64% seasonal and 16.08% rare in Bhawal *beel*.

The recorded fish species' order basis percentage analysis based on availability revealed the highest amount from cypriniformes (38.18%) followed by perciformes (20%) and siluriformes (16.36%). Other seven orders were constituted by Synbranchiformes, Clupeiformes, Osteoglossiformes, Beloniformes, Decapoda, Anabantiformes, and Tetraodontiformes. Sultana et al., (2019) observed highest number of fish species from cypriniformes (33.93%) followed by siluriformes (21.43%) and perciformes (19.65%). Akter et al., (2020) recorded the order based peccetage where highest came from cypriniformes (31.25%) followed by siluriformes (28.13%) and perciformes (14.06%) in Khiru River, Bangladesh. From Halti Beel, Bangladesh, Imteazzaman and Galib (2013) discovered that Cypriniformes (41.27%) was the dominant order, followed bv Siluriformes (22.22%) and Perciformes (20.63%) which supports the present result (Figure 3).

The most prevalent family was listed as Cyprinidae (36.37%), followed by Channidae (7.27%), Bagridae (5.46%), and so on (Figure 4).

Table	1:	Recorded	fish	species	from	the	Pailati	beel

SL.	Order	Family	Scientic	English	Common	Group	Present	Conservation	
No.			Name	Name	Name	Name	Status	Status	;
								BD	Global
1	Cypriniformes	Cyprinidae	Labeo rohita	Rohu	Rui	Carps	MA	LC	LC
2	Cypriniformes	Cyprinidae	Catla Catla	South Asian	Catla	Carps	AA	LC	NE
				carp					
3	Cypriniformes	Cyprinidae	Cirrhinus reba	Reba carp	Lachu	Carps	CA	NT	LC
4	Cypriniformes	Cyprinidae	Labeo calbasu	Orange Fin	Kalibaus	Carps	MA	LC	LC
				Labeo					
5	Cypriniformes	Cyprinidae	Cyprinus carpio	Common carp	Carpio	Carps	MA	NT	VU
6	Cypriniformes	Cyprinidae	Hypophthalmic	Freshwater cyp	Silver carp	Carps	RA	LC	NT
_	a	a	hthys molitrix	rinid fish	-				
/	Cypriniformes	Cyprinidae	Ctenopharyngo	Ray-finned	Grass carp	Carps	MA	NI	NE
0	Cupriniformos	Cuprinidae	don laella Dothia tisto	fishes Tiste barb	Tit punti	barbs and		1/11	
ð	Cypriniformes	Cyprinidae	Petrila ticto	licto barb	lit punti	barbs and	AA	VU	LC
0	Cupriniformos	Cuprinidae	Buntius conhoro	Spotfin gwamp	lat punti	harbs and	A A		
9	Cyphillionnes	Сурппиае	Functus sophore	barb	Jat punti	minnows	AA	LC	
10	Cupriniformes	Cuprinidae	Puntius	5015	Kanchon	harbs and	ΜΔ	10	10
10	cypinnonnes	Cypinidae	conchonius		nunti	minnows	101A		
11	Cypriniformes	Cyprinidae	Puntius auganio	Glass-barb	Mola	harbs and	МА	10	IC
	cypinnonnes	cypiniduc	r antias gaganto		punti	minnows		20	20
12	Cypriniformes	Cyprinidae	Pethia phutunio	Spottedsail	Phutanio	barbs and	MA	LC	LC
				barb	punti	minnows			
13	Cypriniformes	Cyprinidae	Puntius chola	Chola barb	Chola	barbs and	AA	LC	LC
	,	51			punti	minnows			
14	Cypriniformes	Cyprinidae	Systomus	Olive barb	Shorputi	barbs and	MA	NT	LC
			sarana			minnows			
15	Cypriniformes	Cyprinidae	Amblypharyngo	Mola carplet	Mola	barbs and	AA	LC	LC
			don mola			minnows			
16	Cypriniformes	Cyprinidae	Osteobrama	Cotio	Dhela	barbs and	RA	NT	LC
			cotio			minnows			
17	Cypriniformes	Cyprinidae	Securicula gora	Chela gora	Ghora	barbs and	CA	NT	LC
					chela	minnows			
18	Cypriniformes	Cyprinidae	Salmostoma	Silver razor	Chela	barbs and	MA	DD	LC
			acinaces	belly minnow		minnows			
19	Cypriniformes	Cobitidae	Lepidocephalich	Guntea loach	Gutum	Loaches	MA	LC	LC
			thys guntea						
20	Perciformes	Cobitidae	Botia dario	Bengal Loach	Bou rani	Loaches	CA	EN	LC
21	Clupeiformes	Clupeidae	Gudusia chapra	Indian river	Chapila	Clupeids	CA	VU	LC
22	Churchiferran	Churchidae	Carias asharras	shad	Ka ala bi	Churchele			
22	Clupeiformes	Ciupeidae	Corica soborna	The Ganges	каспкі	Ciupeids	AA		LC
22	Parciformac	Channidae	Channa	River sprat	Cozar	Spakeboads	DA	ENI	10
25	Ferchonnes	Channidae	marulius	Shaht	Guzai	Shakeneaus	RA .	EIN	
24	Perciformes	Channidae	Channa striata	Snakehead	Shol	Snakeheads	CA	10	10
24	reichonnes	Channidae	Channa striata	murrel	51101	Shakeneaus			
25	Perciformes	Channidae	Channa	Spotted	Taki	Snakeheads	CA	10	IC
23	T crenormes	channade	punctatus	Snakehead	T GIKI	Shakenedas	CA	20	20
26	Perciformes	Channidae	Channa	Asiatic	Cheng	Snakeheads	CA	LC	LC
			orientalis	snakehead	5				
27	Perciformes	Nandidae	Nandus nandus	Gangetic	Meni	Perches	CA	NT	LC
				leaffish					
28	Perciformes	Anabantidae	Anabas	Climbing	Коі	Perches	MA	LC	LC
			testudineus	perch					
29	Anabantiformes	Osphronemidae	Colisa fasciata	Banded	Baro	Perches	CA	LC	LC
				gourami	kholisha				

Table 1 (continued).

30	Anabantiformes	Osphronemidae	Colisa lalia	Honey	Lal kholisha	Perches	CA	LC	LC
31	Perciformes	Gobiidae	Glossogobius	Tank goby	Bele	Mudskippers	CA	LC	LC
			giuris						
32	Perciformes	Ambassidae	Pseudambassis Iala	Highfin glassy perchlet	Lal chanda	Perches	MA	LC	LC
22	Porciformos	Nymphalidao	Chanda boculis	Dowollod	Chanda	Porchos	CA	ENI	NE
55	reichonnes	Nymphandae	Chanad Decails	Nawab	Chanda	Terches	C.		INL
34	Perciformes	Ambassidae	Chanda nama	Elongate glass	Lamba	Perches	CA	LC	LC
				perchlet	chanda				
35	Beloniformes	Belonidae	Xenentodon	Freshwater	Kankila	Gars	CA	LC	LC
			cancila	garfish					
36	Siluriformes	Siluridae	Wallago attu	Freshwater	Boal	Catfishes	CA	VU	VU
			5	shark					
37	Siluriformes	Siluridae	Ompok pabo	Pabo catfish	Pabda	Catfishes	CA	CR	NT
38	Siluriformes	Clariidae	Clarius	Walking	Magur	Catfishes	МА	IC	IC
	ondinormos	cidinidae	hatrachus	catfish	magai	catholico			
20	Siluriformos	Hotoroppoustidao	Hotoroppoustos	Stinging	Shing	Catfishes	CA	10	10
22	Shufformes	Helefopheuslidae	fecerilie	sunging	Shing	Catlislies	CA	LC	LC
			fossilis	catfish					
40	Siluriformes	Schilbeidae	Neotropius	Indian potasi	Batashi	Catfishes	AA	LC	NE
			atherinoides						
41	Siluriformes	Bagridae	Sperata aor	Long-	Air	Catfishes	CA	VU	LC
				whiskered					
				catfish					
42	Siluriformes	Sisoridae	Bagarius	Gangetic	Baga air	Catfishes	AA	CR	NT
			bagarius	Goonch	5				
43	Siluriformes	Bagridae	Mystus bleekeri	Bleeker's	Gulsha	Catfishes	AA	IC	IC
				mystus	tengra				
11	Siluriformes	Bagridae	Mystus vittatus	Asian stringd	Tengra	Catfishes	۵۵	10	10
	Sharifornies	bagnaae	Trystus vittutus	Asian striped	rengra	catilisties	~~	LC	LC
45	C shareshift and	Marta a challala	Martanalata		To a hota	E.L.		DD	
45	Syndranchitorm	wastacempelidae	Mastacembelus	Elephant trunk	Tara baim	Eels	IVIA	DD	LC
	es		aculentus	fish					
46	Synbranchiform	Mastacembelidae	Mastacembelus	Striped spiny	Guchi	Eels	RA	LC	LC
	es		pancalus	eel	baim				
47	Synbranchiform	Mastacembelidae	Mastacembelus	Zig-zag eel	Baim	Eels	MA	EN	NE
	es		armatus						
48	Synbranchiform	Synbranchidae	Monopterus	Gangetic	Kuchia	Eels	RA	VU	VU
	es		cuchia	mudee					
49	Osteoglossifor	Notopteridae	Notopterus	Bronze	Foli	Feathes	CA	VU	LC
	mes		notopterus	featherback		backs			
50	Osteoglossifor	Notopteridae	Chitla chitla	Clown	Chitol	Feathes	RA	EN	NT
	mes			knifefish		backs			
51	Tetraodontifor	Tetraodontidae	Leiodon	Ocellated	Potka	Puffer fishes	CA	LC	LC
	mes		cutcutia	puffer fish					
52	Decanoda	Soleniceridae	Solenocera	Red prawn	Gura	Prawn	۵۵	IC	NE
52	Jecupouu	Solemeenude	crassicornis		chingri				
E 2	Decanada	Palacomenidae	Macrobrachium	Ciant river	Colda	Brown			
22	Decapoda	Falaeomonidae		Giant river	Golua	PidWii	CA	LC	
L			rosenbergu	prawn		-	 		
54	Cypriniformes	Cyprinidae	Ctenopharyngo	Ray-finned	Gonia	Carps	MA	NT	LC
			don idella	fishes					
	C	C state		Culture 1	D. I.	6			
55	Cyprinitormes	Cyprinidae	Esomus lineatus	Stripped	Darkina	Carps	CA	טט	INE
1				Flying Barb				1	

Figure 2. Present status of fish biodiversity of Pailati beel.

Figure 3. The variety of fish species found in Pailati beel are categorized under various orders.

Figure 4. The families of fish found in Pailati beel and their respective species compositions

The Cyprinidae Family contained the most fish species, out of 54 species from charar beel (Raushon et al., 2019). According to Sultana et al. (2019), the Cyprinidae family contributed 17 species, which makes it the most abundant family in the Bhawal beel. Most fish species (16) from the cyprinidae family were seen from the Dogger beel (Siddiq et al., 2013) which is similar to the current study.

Out of the 13 identified groups in the beel, barbs and minnows (20%) were found to be the most prevalent, followed by carps (16.36%), catfishes, and perches (14.55%). Clupeids, loaches, prawns, and featherbacks were estimated to make up roughly (3.64%) of the total fish population, followed by snakeheads and eels (7.27%) (Figure 5). Trina et al., (2016) obseeved the highest percentage in catfishes, at 24%. The percentages for perches, carps, barbs, and minnows are 18%, 16%, and 15%, respectively, demonstrating their strong association. When Clupeids and Loaches are individually accounted for at 3%, Snakeheads make up 8%. Featherbacks and Miscellaneous both contribute 4%, while Eels and Mud Eels contribute 5% which supports the present result.

According to the IUCN Bangladesh report from 2015, more than half of the entire fish population (53.36%) was categorized as "least concern" (LC). Approximately 14.55% and 10.90% of the total available fish species were belong to near threatened and vulnerable category respectively in IUCN Bangladesh (2015). The conservation status of fish species from Pailati beel was evaluated globally, and it was found that most of the listed species (74.55%) were categorized as being of least concern (LC). The remaining species were either not evaluated (NE) (12.73%), not threatened (NT) (7.27%) and vulnerable (VU) (5.46%). (Figure 6).

Figure 5. Distribution of fish groups that are commonly found in the Pailati Beel.

Figure 6. Conservation status of the fish species that have been documented (a, according to Bangladesh); (b, according to global status) in Pailati *beel* (IUCN Bangladesh, 2015).

In the present study, the values of H varied from 3.25 (December) to 3.34 (February), d varied from 5.67 (February) to 5.95 (January), J' varied from 0.443 (December) to 0.462 (February), and C varied from 0.91 (December) to 0.97. (February) The results for H, J', and C indicated that February was the month with the highest amount of fish fauna. During this time, the most fish species were identified. In December, the number of species recorded was lowest. According to Rahman et al., 2015, the Talma River showed variations in H, D, and e values throughout the year. The H values ranged from 1.06 in June to 1.51 in October, while the D values ranged from 5.34 in July to 7.41 in October. Additionally, the e values varied from 0.65 in May to 0.73 in October. Richness index values ranged from 3.889 (November) to 8.679 (January), evenness index values varied from 0.4879 (September) to 0.8252 (May), dominance index values ranged from 0.625 (September) to 0.9423 and diversity index value varied from 1.726 (November) to 3.406 (May) in Hakaluki Haor (Iqbal et al., 2015). Das et al., (2022) recorded d varied from 3.430 (December) to 2.325 (March), J value ranged from 0.508 (November) to 0.561 (March) and C varied from

0.244 (January) to 0.294 (November) in Shari-Goyain River. The highest value of H observed 3.49 and lowest was 3.29, the maximum value of C recorded 0.06 and minimum was 0.05, the value D varied from 7.91 to 6.60 and the value J ranged from 0.50 to 0.61 which are similar to our result

Reason for Declining of Fish Diversity:

- 1. Unregulated fishing practices
- 2. Fishing by dewatering and using poison
- 3. Altering the natural water flow
- 4. catch juvenile and small fish, disrupting fish growth and reproduction
- 5. Harvesting brood fish and fry during the breeding season
- The excessive use of fertilizers, insecticides, and pesticides on agricultural land
- 7. Siltation caused by human activities such as mining and deforestation
- 8. Construction of developmental infrastructure
- 9. Water pollution from human activities such as industrial discharge, sewage, and oil spills

Figure 7. Biodiversity indices of Pailati beel. a) Margalef b) Shannon c) Simpson d) Evenness.

CONCLUSION

The Pailati beel comprised a wide variety of fish, according to the current study. The Pailati beel's fish species diversity has never been studied, and the study's primary goal was to compile a list of all potential native and nonnative fish and prawn species. Due to anthropogenic factors (overfishing, habitat destruction, destructive fishing gear, building of dams, embankments, and siltation, among other things) as well as some natural factors (high drought prone area and changing the river route), the number of fish species in this beel was declining day by day. However, this research will serve as a baseline for future planning on fish diversity regulate and conservation in the Pailati beel.

REFERENCES

- Akter, N., Kunda, M., Harun-Al-Rashid, A., Mazumder, S. K., Sultana, M. A., & Pandit, D. (2020). Fish biodiversity in the Khiru River of Bangladesh: Present status and threats. *Int. J. Nat. Soc. Sci*, 7(4), 30-39.
- Alam, M. S., Hossain, M. S., Monwar, M. M., & Hoque, M. E. (2013). Assessment of fish distribution and biodiversity status in Upper Halda River, Chittagong, Bangladesh. *International Journal of Biodiversity and Conservation*, 5(6), 349-357.
- Chakraborty, B. K., & Nur, N. N. (2009). Study on aquatic biodiversity of Medha beel in the Northern region of Bangladesh. *Journal of crop and weed*, 5(2), 4-11.
- Chakraborty, B., Labh, S. N., Rani, R., & Bhattacharjee, S.(2021). Biodiversity and Management tatus of Charia beel in Northern Bangladesh. *Journal of Scientific Research in Medical and Biological Sciences*, 2(2), 63-80.
- Das, S. R., Pandit, D., Harun-Al-Rashid, A., Tasnim, N., & Kunda, M. (2022). Impacts of brush pile fishing on fish biodiversity: A case study of the Shari-Goyain River in Bangladesh. *Heliyon*, 8(7), e09903.
- DoF. 2022: Yearbook of Fisheries Statistics of Bangladesh, 2020-21. Fisheries Resources Survey System (FRSS), Department of Fisheries. Bangladesh: Ministry of Fisheries and Livestock, 2022. Volume 38: 138p
- FAO 2020: The state of world fisheries and aquaculture Food and Agriculture Organization of the United Nations 18.

- Galib, S.M., Samad, M.A., Mohsin, A.B.M., Flowra, F.A. and Alam, M.T. (2009), "Present Status of Fishes in the Chalan Beel-the Largest Beel (Wetland) of Bangladesh", *International Journal of Animal and Fisheries Science*, Vol. 2 No. 3, pp. 214-218.
- Imteazzaman, A.M. and Galib, S.M. (2013), "Fish Fauna of Halti Beel, Bangladesh", *International Journal of Current Research*. Vol. 5 No. 01, pp. 187-190. Iqbal, M. M., Nasren, S. H. A. M. I. M. A., Mamun, M. A. A., & Hossain, M. M. (2015).
- Fish assemblage including threatened species in Hakaluki Haor, Sylhet Bangladesh. *Journal of agriculture in the topics*, *30*, 233-246.
- Islam, M. A., Islam, M. J., Barman, S. K., Morshed, F., & Marine, S. S. (2015). Study on present status of fish biodiversity in wetlands of Sylhet District, Bangladesh. Agriculture, Forestry and Fisheries, 4(6), 296-299.
- IUCN. The international union for conservation of nature's red list of threatened species. Version 2017-1.
- Joadder, A.M.R., Alam, M.B., Siddique, M.A.B. and Naim, J. (2016). "Present status of fish diversity in the Beel Kumari in relation to fish sanctuary and fishing gears". *Journal of Fisheries*, Vol. 4 No. 2, pp. 390-396.
- Kumar, C. B. (2011). Present status of biodiversity in Bogajan Beel in Northern Bangladesh. J. Fish. Soc. Taiwan, 38(4), 277-300.
- Margalef R 1958: Temporal succession and spatial heterogeneity in phytoplankton. In: Perspectives in Marine biology, Buzzati-Traverso (ed.), Univ. Calif. Press, Berkeley, pp. 323-347.
- Nelson, J.S., 2006. Fishes of the World, fourth ed. John Wiley & Sons, p. 601
- Pandit, D., M. Kunda, D. Ray, and A. Harun-Al-Rashid. "Availability and diversity of fish fauna in the Gurukchi River of Sylhet district in Bangladesh." J. Sylhet Agricult. Univ 7, no. 1 (2020): 1-12.
- Pandit, D., Saha, S., Kunda, M., & Harun-Al-Rashid, A. (2021). Indigenous freshwater ichthyofauna in the Dhanu River and surrounding wetlands of Bangladesh: species diversity, availability, and conservation perspectives. *Conservation*, 1(3), 241-257.
- Pielou EC 1966: The measurement of diversity in different types of biological collections. J.Theoret. Biol., 13: 131-144.
- Rahman, M. A., Mandal, B., Khamari, A., Ullah, M. R., Sazedul, M., Hoque, M., & Chakma, S.
 (2019). Ichthyofaunal diversity of Basurabad Beel in regards with threat factors and conservation measures, Bangladesh.
- Rahman, M. A., Mondal, M. N., Hannan, M. A., & Habib, K. A. (2015). Present status of fish biodiversity in Talma River at Northern Part of Bangladesh. International Journal of Fisheries and Aquatic Studies, 3(1), 341-348.

- Raushon, N. A., M. G. S. Riar, M. H. Rahman, M. Al Mazed, and S. K. Paul. (2019). "Aquatic biodiversity of Charar Beel Gabtoli, Bogura." J. Bangladesh Soc. Agric. Sci. Technol., 16(1-4):133-138
- Rimi, F. S., Mondal, S., Sharif, B. N., & Hasan, M. B. (2022). Cut off from River, but rich in biodiversity: fish biodiversity and livelihood of fishermen in Jhapa baor, Jashore, Bangladesh. Asian Journal of Medical and Biological Research, 8(4), 194-215.
- Saha, B.K. and Hossain, M.A. (2002), "Saldu Beel fishery of Tangail", *Bangladesh journal of Zoology*, Vol. 30 No. 2, pp. 187-194.
- Shamsuzzaman MM, Mozumder MM, Mitu SJ, Ahamad AF, Bhyuian MS. The economic contribution of fish and fish trade in Bangladesh. Aquaculture and Fisheries. 2020 Jul 1;5(4):174-81.
- Shannon CE & Weaver W 1949: The Mathematical Theory of Communication. Urbana, IL:

The University of Illinois Press, 1-117.

- Siddiq, M. A., Miah, M. I., Ahmed, Z. F., & Asadujjaman, M. (2013). Present status of fish, fishers and fisheries of Dogger Beel in Hajigonj Upazila, Chandpur, Bangladesh. *Journal of Aquatic Science*, 1(2), 39-45.
- Sultana, M. A., Kunda, M., & Mazumder, S. K. (2019). Status and decline causes of fish diversity of Bhawal beel, Bangladesh. *Malaysian Journal of Medical and Biological Research*, 6(2), 93-100.
- Sunny, A. R., Reza, M. J., Chowdhury, M. A., Hassan, M. N., Baten, M. A., Hasan, M. R., ... & Hossain, M. M. (2022). Biodiversity assemblages and conservation necessities of ecologically sensitive natural wetlands of north-eastern Bangladesh. *Indian Journal of Geo-Marine Sciences (IJMS)*, 49(01), 135-148.
- Trina, B. D., Rasul, M. G., Hasan, M. M., Ferdous, J., Ferdausi, H. J., & Roy, N. C. (2016). Status of fish biodiversity and livelihood of fisher's community in Dekhar Haor of Bangladesh. *American-Eurasian Journal of Agricultural & Environmental Science*, 16(8), 1417-1423.